

Groupe de Réflexion Académique Lycée (GRAL)

en Mathématiques Mai 2020

Angélique V. Professeur de mathématiques Lycée du Coudon – La Garde – 83

<u>Nature</u>: Bilans de connaissances et de compétences en lien avec les attendus de fin d'année (COVID)

Objectifs pédagogiques : Faire le point sur les connaissances en autonomie

(en classe ou à la maison)

Voie: Générale

Niveau de classe: Seconde

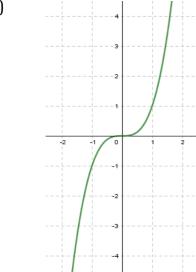
<u>Thématique(s)</u> du programme : Maîtrise des fonctions de référence : Fonction carré

<u>Pré-requis</u>: Ce travail met en jeu la fonction carré: courbe, variations, comparaison d'images, résolution d'équations et d'inéquations.

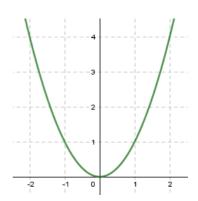
<u>Résumé de l'article</u> : Un petit tour d'horizon de la fonction carré.

Les exercices peuvent être résolus sans faire appel à la

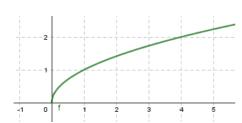
calculatrice.

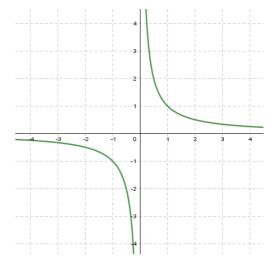

Sans calcul, ranger les nombres suivants par ordre croissant :

$$14^2$$
; $(-12)^2$; 32^2 ; $(-20)^2$; $(-3)^2$


Exercice 2

La fonction f définie par $f(x) = x^2$ est appelée **fonction carré**. Une de ces courbes la représente, laquelle ?


a)


b)

c)

d)

Parmi les points proposés, indiquer ceux qui appartiennent à la courbe d'équation $y = x^2$:

$$B(-3;9)$$

$$A(3;9)$$
 $B(-3;9)$ $C(3;6)$ $D(-4;-16)$ $E(16;4)$

Exercice 4

f désigne la fonction carré Indiquer si chaque affirmation suivante est vraie ou fausse.

Justifier.

- a) Tous les nombres réels ont exactement une image par f
- b) Tous les nombres réels ont au moins un antécédent par f
- c) Il existe au moins un nombre réel ayant deux antécédents par f

Exercice 5

- *a*) Dresser le tableau de variations de la fonction carré.
- b) Comparer, sans calcul, les nombres suivants : $(\pi 1)^2$ et 4

Exercice 6

Indiquer si chaque affirmation suivante est vraie ou fausse. Justifier.

- a) Il n'existe qu'un seul réel égal à son carré
- b) Si x > 5 alors $x^2 > 25$
- c) Si x < 3 alors $x^2 < 9$
- d) Si x < -1 alors $x^2 > 1$

Pour chaque proposition, entourer la (ou les) réponse(s) exacte(s):

- 1) Les solutions de l'équation $x^2 = 2$ sont :
 - a) 4 et -4
 - *b*) 2 et 2
 - *c*) 1 et 1
 - d) $\sqrt{2}$ et $-\sqrt{2}$
- 2) Les solutions de l'inéquation $x^2 \le 4$ sont les nombres :
 - *a*) de l'intervalle [2 ; 2]
 - *b*) de l'intervalle] 2 ; 2 [
 - c) de l'ensemble] ∞ ; 2] U [2 ; + ∞ [
- 3) Des solutions de l'inéquation $x^2 > 9$ sont les nombres :
 - *a*) de l'intervalle] 3 ; 3 [
 - *b*) de l'intervalle] ∞ ; 3 [
 - *c*) de l'intervalle] 3 ; + ∞ [

Exercice 8

- a) Un carré a un côté compris entre 4 cm et 5 cm.
 Donner un encadrement, le plus précis possible, de son aire.
- b) Un carré a une aire de 10 cm².
 Quelle est la longueur de son côté ?
- c) Un carré a une aire au plus égale à 16 cm².

 Quelles sont toutes les longueurs possibles de son côté?

Déterminer le minimum et le maximum de la fonction carré sur l'intervalle [- 5 ; 4].

Exercice 10

a) Soit un réel *x* dans l'intervalle] - 4 ; 5 [.

Expliquer les étapes du raisonnement suivant :

$$-4 < x < 5$$

 $-9 < x - 5 < 0$
 $81 > (x - 5)^2 > 0$

b) En s'aidant de la démarche précédente, encadrer au mieux le réel $2x^2 + 1$ lorsque x est un réel de l'intervalle [-6;-1]