EXAMEN : BACCALAURÉAT GÉNÉRAL

Logarithm Tables

John Napier of Merchiston (1 February 1550-4 April 1617), nicknamed Marvellous Merchiston, was a Scottish landowner known as a mathematician, physicist, and astronomer. He was the 8th Laird of Merchiston. His Latinized name was Ioannes Neper.

In the late $16^{\text {th }}$ century, astronomers spent a large part of their working lives doing the complex and tedious calculations of spherical trigonometry needed to understand the movement of celestial bodies.
John Napier discovered a method of simplifying these calculations using logarithms, replacing the calculation of a multiplication by an addition. So effectively was Napier's method that it was said he effectively doubled the life of an astronomer by reducing the time required to do these calculations.

Source: Wikipedia and IB Higher Math for the international student

1) Knowing that the main property of the natural logarithm for 2 positive numbers a and b Napier used in his table to simplify calculations is $\ln (\mathrm{ab})=\ln (\mathrm{a})+\ln (\mathrm{b})$ show that :

$$
\ln (2)+\ln (5)+\ln (0.1)=0
$$

2) Using the properties of the natural logarithm, show that:

$$
5 \ln (3)-\ln (27)=\ln (9)
$$

N	$\ln (\mathrm{N})$								
1	0	21	3,04	41	3,71	61	4,11	81	4,39
2	0,69	22	3,09	42	3,74	62	4,13	82	4,41
3	1,1	23	3,14	43	3,76	63	4,14	83	4,42
4	1,39	24	3,18	44	3,78	64	4,16	84	4,43
5	1,61	25	3,22	45	3,81	65	4,17	85	4,44
6	1,79	26	3,26	46	3,83	66	4,19	86	4,45
7	1,95	27	3,3	47	3,85	67	4,2	87	4,47
8	2,08	28	3,33	48	3,87	68	4,22	88	4,48
9	2,2	29	3,37	49	3,89	69	4,23	89	4,49
10	2,3	30	3,4	50	3,91	70	4,25	90	4,5
11	2,4	31	3,43	51	3,93	71	4,26	91	4,51
12	2,48	32	3,47	52	3,95	72	4,28	92	4,52
13	2,56	33	3,5	53	3,97	73	4,29	93	4,53
14	2,64	34	3,53	54	3,99	74	4,3	94	4,54
15	2,71	35	3,56	55	4,01	75	4,32	95	4,55
16	2,77	36	3,58	56	4,03	76	4,33	96	4,56
17	2,83	37	3,61	57	4,04	77	4,34	97	4,57
18	2,89	38	3,64	58	4,06	78	4,36	98	4,58
19	2,94	39	3,66	59	4,08	79	4,37	99	4,6
20	3	40	3,69	60	4,09	80	4,38	100	4,61

3) Using the natural logarithm, find the lowest $n \in \mathbb{N}$ such that: $0.9^{n}<0.04$
