Partie 1: un exemple particulier

1.	Nombre de convives	4	5	6
	Nombre de parts de gâteau dans chaque portion	15	12	10

- 2. (a) À la troisième personne : $\frac{8}{60}$ et $\frac{7}{60}$ car $\frac{8}{60} + \frac{7}{60} = \frac{15}{60}$ et à la dernière personne $\frac{5}{60}$, $\frac{4}{60}$, $\frac{3}{60}$, $\frac{2}{60}$ et $\frac{1}{60}$ de somme $\frac{15}{60}$.
 - (b) On s'arrange à créer des sommes de $\frac{12}{60}$:

 à la première personne : $\frac{10}{60}$ et $\frac{2}{60}$;

 à la deuxième personne : $\frac{9}{60}$ et $\frac{3}{60}$;

 à la cinquième personne : $\frac{6}{60}$, $\frac{5}{60}$ et $\frac{1}{60}$.

 à la troisième personne : $\frac{8}{60}$ et $\frac{4}{60}$;
 - (c) On s'arrange à créer des sommes de $\frac{10}{60}$:

 à la première personne : $\frac{10}{60}$;

 à la quatrième personne : $\frac{7}{60}$ et $\frac{3}{60}$;

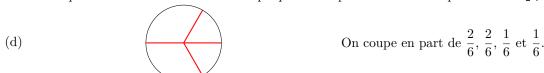
 à la cinquième personne : $\frac{6}{60}$ et $\frac{4}{60}$;

 à la troisième personne : $\frac{8}{60}$ et $\frac{2}{60}$;

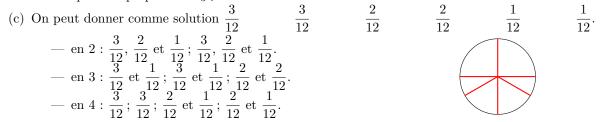
 à la sixième personne : $\frac{5}{60}$ et $\frac{5}{60}$;
 - (d) D'après ce qui précède, on a trouvé un partage en parts qui permet de donner la même portion à chaque convive qu'ils soient 4, 5 ou 6 donc le partage en 11 parts est convivial.

Partie 2 : cas n = 2 et n = 3

- 3. (a) u_2 est le nombre minimal de parts d'une découpe d'un gâteau telle que l'on puisse se partager équitablement le gâteau que l'on soit en 1, 2 ou 3 personnes.
 - (b) Il y aura au maximum 3 convives, donc $u_2 \ge 3$.
 - (c) i. La taille de chaque part est alors de $\frac{1}{3}$.
 - ii. Si l'on coupe seulement en 3 parts, elles seront de même taille pour 3 convives, mais alors il sera impossible de donner autant à chaque personne quand il ne seront que 2. Donc $u_2 \ge 4$.

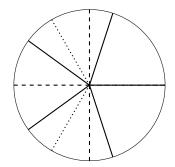


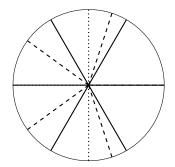
- (e) $u_2 = 4$ d'après ce qui précède.
- 4. (a) On partage équitablement le gâteau que l'on soit en 2, 3 ou 4 personnes, donc 4 personnes au maximum donc $u_3 \ge 4$. Mais si le gâteau était coupé en quatre parts, pour 4 personnes, ces parts auraient des tailles identiques, et il ne serait pas possible de les répartir en 3 pour trois personnes. Donc $u_3 \ge 5$.
 - (b) i. S'il y a 5 parts et 4 convives, un convive a au moins 2 parts (principe des tiroirs) et donc les autres ont chacun 1 part.
 - ii. Les convives ont la même portion de gâteau, soit $\frac{1}{4}$.
 - iii. Il y a trois parts de taille $\frac{1}{4}$ et 2 parts de taille inférieure (dont la somme fait $\frac{1}{4}$. On ne peut donc pas répartir ces dernières sur les trois autres parts.
 - iv. D'après de qui précède $u_3 \ge 6$.

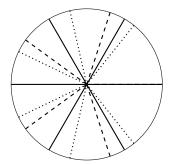


Partie 3 : vers une généralisation

- 5. Pour u_n , il y a au maximum n+1 convives, donc $u_n \ge n+1$.
- 6. Si l'un des convives n'a qu'une part, lorsque ceux-ci sont n, sa part mesure $\frac{1}{n}$. Elle est donc trop grosse pour un nombre de convives à n+1. Tous les convives ont donc au moins 2 parts quand ils sont n. Donc $u_n \ge 2n$.
- 7. Pour n-1 convives, on coupe le gâteau en n-1 parts égales, de même pour n et n+1, mais en partant à chaque fois du même rayon de découpe. Ce qui donne au maximum n-1+n+n+1-2=3n-2 parts. Voici des exemples pour $n=4,\ n=5$ et n=6:







 $8. \ 2n \leqslant u_n \leqslant 3n - 2$

Correction: Segments pixellisés

Partie 1 - Les motifs

- 1. (a) cf annexe
 - (b) cf annexe
 - (c) cf annexe
- 2. (a) Sur la largeur, le centre du pixel de départ et celui d'arrivée sont espacés de a-1 pixels. Sur la hauteur, le centre du pixel de départ et celui d'arrivée sont espacés de b-1 pixels. Comme on ne peut se déplacer en diagonal, il y a a-1+b-1=a+b-2 déplacements à réaliser.
 - (b) Si l'on assimile les n=a+b-2 déplacements comme des cases comme dans la définition, il faut choisir a-1 (ou b-1...) cases pour décider des déplacements vers la droite. D'où le résultat.
- 3. Le nombre de motifs est $C(12+8-2,8-1) = C(18,7) = \frac{18 \times 17 \times 16 \times ...12}{7 \times 6 \times 5 \times ... \times 1} = 31824$

Partie 2 - Les segments pixellisés

- 4. (a) Si l'on a R motifs, il faut $a \times R$ pixels de large pour remplir le segment donc aR = x et R divise x. De même, sur la hauteur, on a bR = y donc R divise y. Donc R est un diviseur commun de x et de y.
 - (b) On a alors $a = \frac{x}{R}$ et $b = \frac{y}{R}$.
- 5. (a) les diviseurs communs de 4 et 8 sont : 1,2,4. Pour R = 1, on a un motif de taille a = 4 et b = 8. Pour R = 2, on a un motif de taille a = 2 et b = 4. Pour R = 4, on a un motif de taille a = 1 et b = 2.
 - (b) cf annexe
- 6. (a) les diviseurs communs de 12 et 24 sont : 1,2,3,4,6,12. Pour R=1, on a un motif de taille a=12 et b=24. Pour R=2, on a un motif de taille a=6 et b=12. Pour R=3, on a un motif de taille a=4 et b=8. Pour R=4, on a un motif de taille a=3 et b=6. Pour R=6, on a un motif de taille a=2 et b=4. Pour R=12, on a un motif de taille a=1 et b=2.
 - (b) cf annexe

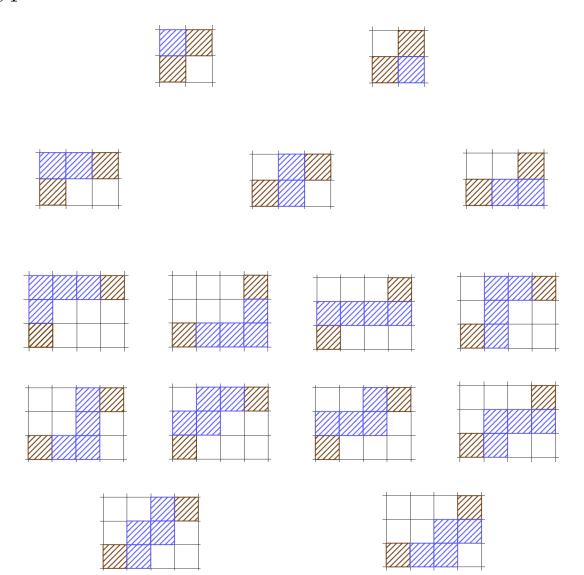
Partie 3 - Les segments pixellisés réguliers

7. Pour x = y, on prend un motif de taille (1,1) et R = x. Les deux conditions sont bien vérifiées car b = 1 et R divise x et y d'après la partie précédente.

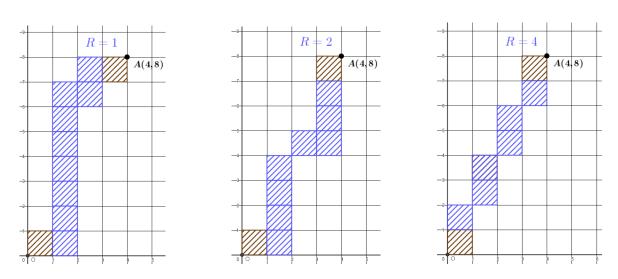
1

- 8. R doit être un diviseur commun de x et de y. Le plus grand est donc pgcd(x,y). De plus dans ce cas, $b = \frac{y}{R}$ est le plus petit entier possible.
- 9. (a) R = pgcd(8, 12) = 4 et le motif a pour taille $a = \frac{8}{4} = 2$, $b = \frac{12}{4} = 3$. (b) cf annexe
- 10. On a nécessairement x = aR = 20 et 4b = y. Donc les couples possibles sont (20, y) avec y un multiple non nul de 4.

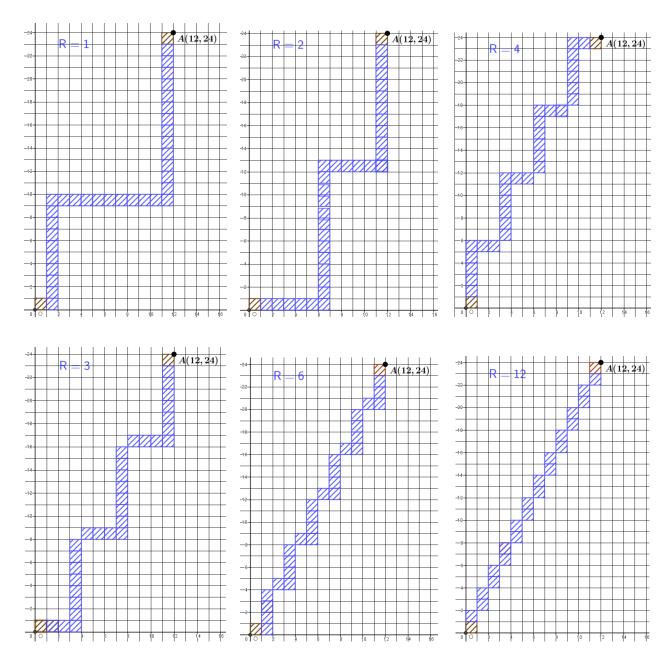
Annexe 1



Annexe 2.1



Annexe 2.2



Annexe 3

